Functional optimization by variable-basis approximation schemes
نویسنده
چکیده
This is a summary of the author’s PhD thesis, supervised by Marcello Sanguineti and defended on April 2, 2009 at Università degli Studi di Genova. The thesis is written in English and a copy is available from the author upon request. Functional optimization problems arising in Operations Research are investigated. In such problems, a cost functional Φ has to be minimized over an admissible set S of d-variable functions. As, in general, closed-form solutions cannot be derived, suboptimal solutions are searched for, having the form of variable-basis functions, i.e., elements of the set spann G of linear combinations of at most n elements from a set G of computational units. Upper bounds on inf f ∈S∩spann G Φ( f ) − inf f ∈S Φ( f ) are obtained. Conditions are derived, under which the estimates do not exhibit the so-called “curse of dimensionality” in the number n of computational units, when the number d of variables grows. The problems considered include dynamic optimization, team optimization, and supervised learning from data.
منابع مشابه
A Comparison between Fixed-Basis and Variable-Basis Schemes for Function Approximation and Functional Optimization
Fixed-basis and variable-basis approximation schemes are compared for the problems of function approximation and functional optimization also known as infinite programming . Classes of problems are investigated for which variable-basis schemes with sigmoidal computational units perform better than fixed-basis ones, in terms of the minimum number of computational units needed to achieve a desire...
متن کاملError Estimates for Approximate Optimization by the Extended Ritz Method
An alternative to the classical Ritz method of approximate optimization is investigated. In the extended Ritz method, sets of admissible solutions are approximated by their intersections with linear combinations of n-tuples from a given set. This approximation scheme, called variable-basis approximation, includes functions computable by trigonometric polynomials with free frequencies, neural ne...
متن کاملContinuous Discrete Variable Optimization of Structures Using Approximation Methods
Optimum design of structures is achieved while the design variables are continuous and discrete. To reduce the computational work involved in the optimization process, all the functions that are expensive to evaluate, are approximated. To approximate these functions, a semi quadratic function is employed. Only the diagonal terms of the Hessian matrix are used and these elements are estimated fr...
متن کاملTo Appear in Siam Journal on Optimization, 2004 Error Estimates for Approximate Optimization by the Extended Ritz Method
An alternative to the classical Ritz method for approximate optimization is investigated. In the extended Ritz method, sets of admissible solutions are approximated by their intersections with sets of linear combinations of all n-tuples of functions from a given basis. This alternative scheme, called variable-basis approximation, includes functions computable by trigonometric polynomials with f...
متن کاملNumerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis
In this study a numerical method is developed to solve the Hammerstein integral equations. To this end the kernel has been approximated using the leastsquares approximation schemes based on Legender-Bernstein basis. The Legender polynomials are orthogonal and these properties improve the accuracy of the approximations. Also the nonlinear unknown function has been approximated by using the Berns...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- 4OR
دوره 9 شماره
صفحات -
تاریخ انتشار 2011